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Analyses of plasma behavior often begin with a description of the ideal magnetohydrodynamic
equilibrium, this being the simplest model capable of approximating macroscopic force balance.
Ideal force balance is when the pressure gradient is supported by the Lorentz force, Vp=j X B. We
discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We
argue that the solutions are pathological and not suitable for numerical calculations. If the pressure
and magnetic field are continuous, the only nontrivial solutions have an uncountable infinity of
discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small
length scales in the structure of the field, and the consequence of ideal force balance that the
pressure is constant along the field-lines, B-Vp=0. A simple method to ameliorate the singularities
is to include a small but finite perpendicular diffusion. A self-consistent set of equilibrium equations
is described, and some algorithmic approaches aimed at solving these equations are discussed.

© 2010 American Institute of Physics. [doi:10.1063/1.3431090]

I. INTRODUCTION

A numerical calculation of the equilibrium magnetic
field is usually the first step in analyzing plasma behavior.
This is a comparatively simple task for a perfectly axisym-
metric tokamak (or any system with a continuous symmetry),
as the symmetry guarantees that a nested, continuous family
of flux surfaces exists, i.e., the magnetic field is integrable.
This is a result of the fact that a toroidal magnetic field is
analogous to a time-dependent, one degree of freedom
Hamiltonian system1 and by Noether’s theorem,” which
states that a Hamiltonian with an ignorable coordinate pos-
sess an invariant of the motion. By exploiting axisymmetry,
the ideal equilibrium equation, Vp=j X B, can be reduced to
the Grad—Shafranov equation, and equilibrium solutions can
generally be found numerically.

Perturbations to an axisymmetric system, either from in-
ternal plasma motions or coil alignment errors, lead to the
formation of magnetic islands, chaotic field-lines, and the
destruction of flux surfaces. However, from the
Kolmogorov—Arnold-Moser (KAM) theorem,”™ we know
that (under certain conditions) for a Hamiltonian system
slightly perturbed from an integrable case, the strongly irra-
tional flux surfaces are likely to survive. We can expect that
a realistic tokamak, therefore, will possess a finite-measure
of KAM surfaces in addition to the islands and chaotic vol-
umes. This is fortunate, as it is primarily the existence of flux
surfaces that results in plasma confinement: if a small pertur-
bation to an integrable system resulted in the immediate de-
struction of all flux surfaces, then one could not expect a
realistic tokamak to provide confinement.

Indeed, under some conditions, applied resonant mag-
netic perturbations (RMPs) can advantageously be used to
suppress edge-localized-modes (ELMs)." 1t is plausible to
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expect that such perturbations will result in the formation of
magnetic islands at the rational surfaces, and the overlap of
these islands will cause chaotic fields, particularly near the
plasma edge. Some understanding of the impact of applied
magnetic perturbations may be gleaned, at least in the low
pressure case, by superimposing the equilibrium and error
fields. The degree of magnetic chaos can then be determined
by field-line tracing. Such an approach however cannot ac-
count for the self-consistent plasma response. To what extent
the field becomes chaotic (or whether ideal plasma flows will
respond by shielding out the error fields'"'?) remains un-
clear. The importance of computing non-axisymmetric equi-
libria with chaotic fields is emphasized by noting that it is
likely that ITER will employ RMP methods to suppress
ELMs.

Stellarators are intrinsically nonaxisymmetric and thus
generally possess nonintegrable fields. Stellarators are de-
signed to have “good-flux-surfaces” as much as possible,13_16
but despite one’s best efforts, without a continuous symme-
try, perfectly integrable fields cannot be achieved. Also, com-
putational evidence suggests17 that as the plasma pressure
increases, stellarator fields become increasingly chaotic. To
understand the impact magnetic islands and chaotic fields
have on plasma confinement, for both realistic tokamaks and
stellarators, a computational algorithm that solves for the
plasma equilibrium in the presence of islands and chaotic
fields, and a significant volume of robust KAM surfaces, is
required.

A given magnetic field may be a continuous, smooth
function of space so that B(x+ &x)=B(x)+VB- &x+O(5?),
but it also may be ‘“chaotic.” The term chaotic is really a
description of the magnetic field-lines, i.e., the phase space
of the magnetic field. The behavior of the field-lines of a
chaotic field depends sensitively on position—not just in the
sense that nearby trajectories may separate exponentially at a
rate given by the Lyapunov exponent, the so-called butterfly-
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effect, but also in the sense that irregular, chaotic trajectories
lie arbitrarily close to regular trajectories and invariant flux
surfaces.

A chaotic magnetic field has a fractal phase space struc-
ture. The fractal structure arises when an integrable field is
generally perturbed, as the rational flux surfaces and irratio-
nal flux surfaces break apart quite differently. Quoting
Grad,'® “What is pathological is the question that is asked,
viz., what is the position of a magnetic field-line after infi-
nitely many circuits?” Some field-lines trace out structures
that are infinitely complex, such as the unstable manifold and
the irregular trajectories, which seem to come arbitrarily
close to every point in a fractal volume. Interspersed between
these irregular field-lines are periodic orbits; arbitrarily
small, high-order island chains; and irrational field-lines,
which may or may not trace out smooth flux surfaces.

Ideal force balance has the consequence that B-Vp=0 so
that the pressure is constant along the infinite length of every
field-line. The structure of the pressure is exactly tied to the
structure of the magnetic field. This paper shall argue that for
a chaotic magnetic field, a continuous, nontrivial pressure
that satisfies B-Vp=0 must also be fractal.

This paper raises various objections to computational al-
gorithms that seek solutions to ideal force balance,
Vp=jXB, with continuous pressure and chaotic fields. In
Sec. II, we review the derivation of ideal force balance from
a minimization principle, but discard this as a practical nu-
merical approach for treating chaotic fields as ideal varia-
tions do not allow the topology of the field to change. In Sec.
III, the solubility conditions on magnetic differential equa-
tions are reviewed and applied to chaotic fields. In Sec. IV,
the fractal structure of the phase-space of chaotic fields is
reviewed. As the structure of the pressure is tied to the struc-
ture of the field we conclude, in Sec. V, that a nontrivial,
continuous pressure has an uncountable infinity of disconti-
nuities in the pressure gradient and so therefore must the
current. Thus, Vp=j X B cannot serve as a coherent math-
ematical foundation for a computational algorithm. The
problems caused by the pathological structure of the solution
are not easy to remedy by ad hoc adjustments to an iterative
algorithm and lead to convergence problems, as discussed
briefly in Sec. VI, Finally, in Sec. VII, we suggest that it is
preferable instead to seek solutions to a well-posed nonideal
equilibrium model, and in Sec. VIII we discuss various al-
gorithmic approaches aimed at solving for such an equilib-
rium.

Il. ENERGY MINIMIZATION

Equilibria of conservative dynamical systems are sta-
tionary points of an energy functional. The plasma potential
energy is'?

2
W:f <L+B—>dv, (1)
pry—1 2

where B is the magnetic field and the pressure, p, is a scalar
function of position. Ideal equilibria are states that extremize
this functional with respect to ideal variations in the pressure
and fields. If we use Faraday’s law and the ideal Ohm’s law,
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the plasma displacement, 6§, is related to variations in the
magnetic field via SB=V X (6 X B). Such variations pre-
serve the topology of the field.***' The first order variation in
W is

W= f (Vp—j X B)- 8&dV, (2)
V

where j=V X B is the plasma current, and we have used the
boundary condition that the magnetic field is tangential to a
fixed plasma boundary, B-dS|s,=0. Plasma states that ex-
tremize the energy functional, subject to arbitrary ideal varia-
tions in the plasma position, must satisfy the Euler—Lagrange
equation, Vp=j X B.

An arbitrary magnetic field may be written as

B=VX(yVO-xV0, (3)

where (i, 6,{) is some coordinate system and x(i, 6,{) is
the field-line Hamiltonian. This representation follows from
writing B=V X A, using gauge freedom to write A=A,V 6
+A §V ¢, and then identifying ¢y=A, and y=-A,. The equa-
tions defining a field-line are given by Hamilton’s equations:
6= dyx and zﬁ:—ﬁg)(, where 6 and ¢ are analogous to the
position and canonical momentum, and the “dot” denotes
derivative with respect to the “time” coordinate, {.

If x depends only on #, x=xo(#), then ¢ is invariant
along the field-line. The field is called integrable, and 6 and
{ are straight-field-line coordinates. The flux surfaces coin-
cide with isosurfaces of ¢, and the angles € and ¢ describe
how the field-lines wrap around the flux surfaces. The
rotational-transform, t (or transform for short), is generally
defined as the average rate of increase in @ with respect to {
along a field-line, t=lim,, .. A®/A{. This limit may not
exist on irregular field-lines, but for the integrable case we
simply have t=4,,x.

The magnetic field is completely determined by y and
the coordinate functions ¢, 6, and {. The latter may be speci-
fied inversely: R=R(#,0,{), p=-¢, and Z=Z(, 0, ), where
(R, ¢,Z) are the standard cylindrical coordinates (and some
arbitrariness has been removed by the restricted choice of
toroidal angle). We may vary the shape of the magnetic field
by varying the coordinate transformation and preserve the
topology of the field. In such a manner we may minimize the
plasma energy subject to the constraint of fixed topology.
This is the approach adopted by the VMEC code?** (with the
exception that VMEC allows the poloidal angle to vary in
order to condense the Fourier spectrum of the coordinate
transformation®->°).

Chaotic fields may also be written in the form described
by Eq. (3), but the field-line Hamiltonian must now be al-
lowed to depend on the angles, x=xo(¥)+=,,Xm: ()
Xexp(im#—in{). The most enigmatic characteristic of a cha-
otic magnetic field is its topology, but with this general form
for the Hamiltonian and arbitrary y,,,, the topology cannot
be simply determined. If one were to proceed via a minimi-
zation algorithm, then, quoting Kruskal and Kulsrud," “we
must choose the initial magnetic field to have precisely those
topological properties possessed by equilibria of interest.” It
seems impossible that we could a priori know the chaotic
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structure of the solution that we are searching for, and a
computational algorithm must let the topology of the field
change. Without a constraint on the topology one cannot de-
rive Eq. (2) from Eq. (1). Except for the trivial solution, B
=0 and p:O,19 ideal force balance with chaotic fields cannot
be solved using a minimization algorithm.

Rather than understanding Vp=jXB to be an Euler—
Lagrange equation arising from an energy minimization prin-
ciple, this equation may be understood as statement that an
equilibrium is obtained when the pressure gradient is sup-
ported by the Lorentz force. Presumably, a numerical solu-
tion could be found iteratively. The HINT code,”’27 and its
successor the HINT2 code,” and the PIES (Refs. 29-31) code
seek solutions to Vp=j X B without constraints on the topol-
ogy of the field. The HINT algorithm is based on a relaxation
approach,32 whereas the PIES algorithm is based on an itera-
tive scheme™ using magnetic coordinates.”*

Ill. MAGNETIC DIFFERENTIAL EQUATIONS

Many of the mathematical problems of ideal magnetohy-
drodynamics (MHD) can be traced back to equations of the
form B-Vr=s, which are called magnetic differential
equations.19 If we integrate this equation along a magnetic
field-line that, after some distance, returns to the starting
point (i.e., a periodic orbit), then for r to be single valued, s
must satisfy the solubility condition $sdl/|B|=0,"> where
[dl/|B| is the integral along a field-line and is the inverse
operator to B-V. Any numerical method for solving this
equation will fail unless the solubility conditions on s are
satisfied.

A defining property of irregular field-lines is that they
come arbitrarily close to any point in a given (fractal) vol-
ume, including the starting point. Let us choose a point, X,
in an irregular region and measure distance along a field-line
with /. Let [;,i=1,2,... label the infinitely many, seemingly
random distances along the field-line at which the field-line
returns to within & of the initial point, |x(;)—x,| < 8. For r to
be continuous then, for arbitrarily small €, there must exist a
6 such that

li
f sdl/B < e. 4)

For a solution to this equation to exist, this infinite set of
solubility conditions must be satisfied by each of the infi-
nitely many irregular field-lines present in any chaotic vol-
ume.

Ideal force balance has the direct consequence that the
pressure is constant along a field-line, B- Vp=0. The integra-
bility condition in this case is trivially satisfied. Another
magnetic differential equations arises for the parallel current.
By writing the current as j=oB+j, and insisting that
V-.j=0, the parallel current must satisfy B-Vo=-V-j,. An
expression for the perpendicular current may be obtained
from force balance, j , =B X Vp/B>. For an arbitrary pressure
gradient, the solubility condition on V-j, may not be satis-
fied. The following discussion concentrates primarily on the
properties of the solutions to these two magnetic differential
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equations when the field is chaotic. Unless stated otherwise,
we will assume that the pressure is a continuous function of
space.

Consider first an integrable field with continuously
nested rational and irrational surfaces that fill space. Each
irrational field-line comes arbitrarily close to every point on
its flux surface (i.e., an irrational flux surface is the closure of
an irrational field-line). To satisfy B-Vp=0, with p being
continuous, we must require that the pressure is constant on
each irrational surface. A rational flux surface is a family of
distinct periodic orbits. As it stands, the equation B-Vp=0
allows for each of these periodic orbits to maintain a distinct
value of the pressure; however, each rational surface may be
approximated arbitrarily closely by irrational surfaces. For
continuity, the pressure must be constant on each rational
surface. For integrable fields, the pressure is an arbitrary sur-
face function, p=p(s), where s labels flux surfaces. Indeed,
this arbitrary function (and a function describing the current
or transform profiles and the shape of the plasma boundary,
for example) is required as a boundary condition to the dif-
ferential equations described by Vp=j X B, which reduces to
the Grad—Shafranov equation for axisymmetric systems.

The solution for the parallel current, even for integrable
systems, is not straightforward. In straight-field-line
coordinates, the B-V operator becomes Vg~'(tds+d,),

and on Fourier decomposing the parallel current,
0=2,,,0 ., exp(im6—in{), we obtain
P
1N V. m
Opn = M8V ) + 8(mt—n), (5)

Kmn

where «,,,=mt—n. For integrable fields the Dirac delta-
function current, 8(mt—n), is generally required to provide a
field that cancels out resonant error fields at the rational
surface that would otherwise result in the creation of
magnetic islands®®"” and has been invoked to explain
island-healing phenomena.38 The Pfirsch—Schliiter current,
i(\EV ‘3 1 )mn! Kpns 18 singular where t=n/m. The singularity
may be removed by locally flattening the pressure profile at
the rational surfaces. Flattening the pressure at the rational
surfaces is exactly what the introduction of chaotic fields
entails. However, as we describe below, the introduction of
chaotic fields introduces more problems than what might na-
ively be anticipated.

One approach39 for treating the effect of chaotic fields is
to exploit an analogy between the magnetic differential equa-
tion and the Liouville equation for magnetic field-lines.*’
Expanding upon an idea presented by Reiman et al.,*' Krom-
mes and Reiman®’ suggested that by using methods of sta-
tistical averaging, the chaotic field-lines (at the macroscopic
level) can be described by a diffusion equation, which effec-
tively removes the Pfirsch—Schliiter singularity by introduc-
ing a resonance broadening term,

. ”_ .
_ len(\‘Jg \ '.]J_)mn
mn = 2 2
Koin T T

: (6)

where 7,,, is a smoothing parameter related to the magnetic
diffusion coefficient.
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IV. THE FRACTAL STRUCTURE OF CHAOS

Perturbations to an axisymmetric system, or intrinsic
three-dimensional effects, destroy flux surfaces and lead to
the formation of magnetic islands (and thus chaotic field-
lines) if the topology of the field is not constrained. From the
KAM theorem,” we know that for a magnetic field slightly
perturbed from an integrable case, only tori with sufficiently
irrational transform will survive, where t is sufficiently irra-
tional if it is poorly approximated by rationals and satisfies a
Diophantine condition: there exists an »>0 and k=2 such
that for all integers p and ¢, |[t—p/q|>r/g*. By the same
argument as above, the pressure must be constant on these
irrational KAM surfaces.

For a generally chaotic field, there is no region of space
foliated with flux surfaces! Quoting Greene,42 “there is a
stochastic region in the immediate vicinity of every chain of
periodic orbits.” For an arbitrarily perturbed field, magnetic
islands and irregular field-lines will emerge at the infinitely
many rational surfaces that exist between any pair of KAM
surfaces. These chaotic volumes are not covered by a single
magnetic field-line but rather are filled by infinitely many (i)
unstable manifolds* and irregular field-lines that come arbi-
trarily close to any point within a fractal volume, (ii) stable
and unstable periodic orbits,”* and (iii) cantori.*** Embed-
ded in these ergodic regions, there may exist an infinite
“honeycomb” of local regions of stability, namely, the ellip-
tic surfaces about the stable periodic orbits* (and around
these islands there may exist secondary islands with their
own elliptic surfaces and resonances ad infinitum).

The equation B-Vp=0 allows the pressure on each field-
line to be distinct. However, as the irregular field-lines within
the ergodic sea may come arbitrarily close to each other, we
must conclude that unless the pressure on each of these field-
lines is identical, infinite pressure gradients will be created.
The only continuous solution is that the pressure is constant
between the KAM surfaces. [This is convenient, as the sin-
gularity in Eq. (5) is removed by setting pressure gradient to
zero across the rational regions. ]

The KAM surfaces separate chaotic volumes, but not all
KAM surfaces are created equal. Irrational surfaces that are
furthest from low-order islands are typically the least de-
formed by low-order resonant perturbations and conse-
quently are the most robust in that they survive to compara-
tively higher levels of chaos.** Furthermore, in these
particularly irrational regions, the phase space density of
KAM surfaces is highest.

The KAM surfaces are fragile in the sense that as the
degree of chaos increases, the KAM surfaces become in-
creasingly deformed. A surface is called critical when it is
continuous but no longer smooth, and an infinitesimally
small increase in the chaos will cause the closure of an irra-
tional field-line to disintegrate into invariant, irrational Can-
tor sets, called cantori.*~*® Though the cantori are sets of
measure zero, cantori have an important impact as they can
form extremely effective partial barriers to field-line
transport,50 and field-lines may spend an arbitrarily long time
near the cantori (i.e., cantori are “sticky”51753). The existence
of KAM surfaces, near-critical cantori, and magnetic islands
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violates the assumptions underpinning random walk treat-
ments of field-lines.

As one approaches the irregular region near an unstable
periodic orbit, the phase space density of KAM surfaces be-
comes sparser. The KAM surface that lies adjacent to an
irregular region associated with an island chain is called a
boundary surface,54 and these surfaces are critical. As a
given boundary surface is destroyed by an increase in the
degree of chaos, the next closest KAM surface may be a
finite distance from the original so that the location of the
closest KAM surface to a given island chain is not a continu-
ous function of perturbation.5 >

As the perturbation and chaos increases, the topology of
the field breaks up in a rather unpredictable fractal manner:
not-so-irrational KAM surfaces are destroyed leaving behind
near-critical cantori; stable periodic orbits bifurcate and be-
come unstable, and additional periodic orbits are born; and
field-line transport through gaps in the supercritical cantori
increases. Randomly following field-lines in a chaotic region
is almost guaranteed to give unreliable results, unless per-
haps a large number of field-lines are followed for an ex-
tremely long distance: for example, in a numerical experi-
ment by Meiss,56 it was shown that about 10' iterates are
required for an irregular trajectory to uniformly cover the
chaotic region. Following field-lines for this distance is not
practical in an iterative scheme.

A common approach is to approximate the effect of cha-
otic trajectories by assuming a magnetic field-line
diffusion.””™® Such an assumption may be justified for
strongly chaotic fields; however, given that realistic toka-
maks and stellarators will likely possess a finite measure of
invariant surfaces, one may ask if such an assumption is
always reliable. Field-lines that lie on KAM surfaces obvi-
ously do not diffuse radially, and neither do the periodic
orbits, the cantori, nor the field-lines within the local regions
of stability. As the perturbation increases, the stable periodic
orbits become unstable, and the local regions of stability ul-
timately vanish, but even after the destruction of the KAM
surfaces, the existence of cantori has a profound impact on
magnetic field-line transport. The cantori also restrict aniso-
tropic transport in chaotic fields,”® where cross field transport
is modeled by a small perpendicular diffusion, so much so
that the temperature profile across a chaotic field is effec-
tively solved by transforming to “chaotic-coordinates,” in
which the coordinate surfaces are adapted to the cantori and
periodic orbits.”

The approximation that magnetic field-lines diffuse is
only reliable in the strongly chaotic case (so-called hyper-
bolic chaos) when all the local regions of stability are de-
stroyed, and all the KAM surfaces are well and truly de-
stroyed. A similar conclusion was reached by Rosenbluth ef
al® who showed that “if resonances do not overlap, then
flux surfaces are destroyed in a local region; when reso-
nances overlap strongly, a Brownian motion of field-lines
occurs.” A robust computational algorithm should be capable
of treating completely integrable fields, nearly integrable
fields (in which a few small islands may be present), near-
critical fields (in which most irrational surfaces are destroyed
but some KAM surfaces survive), and strongly chaotic fields,
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without assuming a Brownian motion of field-lines (and
preferably without the requirement of inverting singular op-
erators associated with magnetic differential equations).

V. A NONTRIVIAL PRESSURE

Let us attempt to construct a nontrivial, continuous pres-
sure that is consistent with the fractal structure of the chaotic
field. We may imagine a radial coordinate, s, with level sur-
faces that coincide with the KAM surfaces. For simplicity of
discussion, we restrict attention to systems with a monotonic
transform profile so that we may label KAM surfaces by
their transform. For a given magnetic field, let S be the sub-
set of the real numbers, SCR, for which s € S if and only if
a KAM surface with transform t=s exists. On each KAM
surface, we may impose a pressure gradient, and across the
islands and chaotic volumes we require the pressure gradient
to be zero. The pressure gradient, p’'(s), may be written
p'(s)=Zs(s)P(s), where Zg(s)=1 if s € S and zero otherwise,
and P(s) is some arbitrary function that, for continuity of the
pressure, we must assume is bounded. Note that because a
small island chain (with generally a chaotic separatrix) will
form where the transform is rational, Z(s) is zero for a small
region about rational s=p/q.

Immediately we are in trouble. For an arbitrary chaotic
magnetic field, there is no method by which the set S may be
determined. An essential characteristic of S is that this set
has finite measure by which we may understand that this set
has an uncountable infinity of elements. Numerical tech-
niques, such as Greene’s residue criterion, ! may be ap-
plied to determine if a single KAM surface with given irra-
tional transform exists, and one could imagine an algorithm
that successively searched for, and Construc:ted,62 irrational
surfaces ad infinitum.

To identify and construct a KAM surface that is arbi-
trarily close to destruction requires an arbitrarily large com-
putational effort, as near-critical KAM surfaces and slightly
supercritical cantori are difficult to distinguish. Furthermore,
one could determine at most only a countable infinity of
KAM surfaces, which remains a set of measure zero. If S is
approximated by a set of measure zero, which presumably it
must be if one employs a discrete numerical grid, then inte-
grating p’(s) to obtain p(s) can only result in the trivial func-
tion, p(s)=const. To our knowledge, determination of the set
S for a given chaotic system remains an outstanding problem
(though there is some interesting work comparing the critical
function to the Brjuno function®™).

There is no bounded function P(s) that gives a non-
trivial, continuous pressure gradient. For any rational p/q,
we have Zs(p/q)=0, and so p'(p/¢)=0. To have a nontrivial
pressure, the function p’(s) must be nonzero on a set with
finite measure. Consider some irrational te S, where P(t)
and therefore p’(t) are nonzero. To show that p’ is not con-
tinuous at t, we may take a sequence of rationals, p,/q,, that
converges to the irrational: p,/q,—t as n—c. A suitable
sequence is provided by the convergents derived from the
continued fraction representation.”* We have p’(p,/q,)=0
for all n, and so p'(p,/q,) —0 as n—oo, but we have as-
sumed that p’(t) is nonzero. Thus, to give a nontrivial pres-
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sure, the pressure gradient, Vp, must have an uncountable
infinity of discontinuities. So, therefore, does the perpendicu-
lar current, j , =B X Vp/B2.

In irregular regions we have concluded that p=const. is
the only continuous solution to B-Vp=0. We thus have
j . =0, which in turn gives B-Vo=0, and so the parallel cur-
rent must also be constant in the irregular regions. In the
irregular volumes, the field must be a linear, force-free field,
i.e., a Beltrami field j=oB. To obtain a nontrivial, continu-
ous pressure, we must enforce a nonzero, finite pressure gra-
dient on an infinite collection of KAM surfaces. However,
Vp is not continuous at the irrational surfaces, so neither is
j.,and V-j, is not defined. The operator B-V is not singular
on the irrational surfaces, but the solution to B-Vo=-V.j
is not defined.

Let us assume that a nontrivial, noncontinuous pressure
gradient has been presented and that this function has been
integrated to provide the pressure, p(s). Having a gradient
with an uncountable infinity of discontinuities, we may con-
clude that the scale length, L, of the pressure is zero (except
where the pressure is constant). As any diligent student of
numerical methods is aware, a discrete approximation to a
system of equations is only reliable when the scale length, A,
of the numerical resolution is smaller than the scale length of
the solution, that is, to adequately approximate a function,
we must have h=L. A standard finite-difference or finite-
element approximation to p(s), even with a countably infinite
grid, cannot resolve the structure of the solution to the extent
that its gradient Vp will be accurate. Thus, as it stands, non-
trivial solutions to Vp=j X B are pathological when the fields
are chaotic.

Let us imagine that a chaotic equilibrium has been con-
structed by an iterative algorithm and consider the properties
of the solution. The solution to a system of differential equa-
tions is defined by the boundary conditions imposed, which
are typically provided at the outset. For determining ideal
MHD equilibria, the pressure (and either the current or trans-
form) is required to supplement Vp=j X B. In the integrable
case, as flux surfaces foliate space and thus may serve as
coordinate surfaces, an arbitrary function p(s) may be speci-
fied.

In the case of chaotic fields, however, the structure of the
pressure (a boundary condition) is intimately tied to the
structure of the magnetic field (the solution to the differential
equation), but the structure of the solution magnetic field is
not initially known. Just as the topology of the equilibrium
magnetic field cannot be known a priori, neither can the
pressure. We are in the curious position of having to con-
struct a valid boundary condition simultaneously with con-
structing the solution.

How do we understand the stability of such an equilib-
rium? There is no energy functional as there is no topological
constraint, and there is no well-defined boundary condition.
The best statement that one could make regarding stability
would merely be a property of one’s algorithm rather than
any physically motivated concept of stability. (Recall that
Newton’s method will just as easily converge to an unstable
solution to system of equations as it will to a stable solution.)
Perhaps we can understand stability by turning on the time
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evolution under the equations of resistive MHD, which does
not constrain the topology of the field. For this it would seem
that we would need to construct the equilibrium as a resistive
steady state, but a resistive steady state does not satisfy Vp
=j X B for finite resistivity.

VI. A CHAOS FILTER

To eliminate the discontinuities in the pressure gradient
we have two choices. We may approximate the set S with
something nonfractal, or we must allow B-Vp # 0. Approxi-
mating S with a nonfractal set is equivalent to replacing the
chaotic magnetic field by a field with finite volumes foliated
by flux surfaces, on which a smooth pressure profile may be
imposed, which are perhaps separated by a few “nonignor-
able” islands and associated regions of chaos, across which
the pressure must be constant. We may write, for example,

B=F[B], where F is some filtering operation that takes the

true chaotic field, B, and returns an approximation, ﬁ, with
the small scale structures removed. Such a field could then
be used to define a piecewise smooth pressure profile consis-

tent with ]§~Vp=0, which in turn could be used to solve for

the parallel current from B-Vo=-V-j, as the uncountably
infinite set of discontinuities caused by the fractal structure
of the chaotic field is removed.

We raise the following objections. By filtering out the
chaos, we are to some extent abandoning our original goal:
to construct an MHD equilibrium allowing for chaotic fields.
Recall that it was the introduction of magnetic islands (and
the associated pressure flattening) at the rational surfaces that
eliminated the singularity in the Pfirsch—Schliiter current. If
the islands at the high-order rational surfaces are removed
and replaced by nested flux surfaces, then the Pfirsch—
Schliiter singularities at these rational surfaces will re-
emerge. The equilibrium becomes schizophrenic: we have
one magnetic field that satisfies Vp=jX B and is generally
chaotic, and we have another magnetic field that satisfies

]in:O. To filter out the small scale structure, one must
introduce a length scale below which the fine scale structure
of the field can be ignored; however, there is no length scale
in Vp=j X B, so the introduction of a length scale must be
justified by some other means.

In order to have a complete mathematical model of
MHD equilibria, an equation describing the filtering opera-
tion, F, must be provided: to our knowledge, this has not yet
been presented, and so the small scale filter must instead be
constructed using an algorithmic approach. Algorithmic ap-
proaches are usually best avoided, as different researchers
may devise different algorithms, which could lead to differ-
ent results. This is particularly true in this case considering
that the fractal structure of the field is difficult to character-
ize.

Consider a filtering approach based on constructing an
arbitrary discrete collection of KAM surfaces (perhaps se-
lected by their transform) and assuming a smooth interpola-
tion. An infinitesimal increase in the chaos may lead to the
destruction of one or more of the selected KAM surfaces, but
unless the filtering operation is smooth so that small changes
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in B lead to small changes in B, we may expect that an
iterative algorithm will encounter convergence problems. As
flux surfaces become increasingly deformed they presumably
can support less pressure and as flux surfaces are destroyed,
they can support no pressure since irregular field-lines may
pass through gaps between the remnant irrational set (the
cantorus). Again, for stability of an iterative algorithm, one
must accommodate the fact that near-critical KAM surfaces
(e.g., boundary surfaces) cannot be allowed to support a fi-
nite pressure, so the filtering algorithm may need to diagnose
the structural stability of KAM surfaces (a difficult task in
itself) in addition to merely determining the existence of
KAM surfaces.

One cannot expect reliable results if one “samples” the
structure of phase space on a fixed regular grid. If, for ex-
ample, we use a piecewise-linear approximation to represent
a smooth function on a fixed regular grid, with grid size A,
then we can expect the associated error to be second order,
O(h?), but in the case of chaotic fields, any function tied to
the topology of the field must be fractal.

The above objections are intended to illustrate the prob-
lems that will be encountered if one chooses to pursue an
algorithmic approach to filtering out the small scale struc-
tures of the field. Within ideal MHD, there is no justification
for ignoring the small scale structure of the field. Certainly,
the infinitesimal structures of the field are not important if
one considers finite-Larmor-radius effects or if some model
of transport across the magnetic field is to be included. How-
ever, if one wishes to remove the fractal nature of the solu-
tions by appealing to additional physics, to provide a com-
plete mathematical model of chaotic equilibrium (rather than
presenting an ad hoc algorithm), then mathematical equa-
tions that describe the additional physics must be included.

VIl. ALTERNATIVES

The problems for MHD equilibria, as discussed above,
arise from the combination of (i) chaotic fields, (ii) continu-
ous pressure and fields, and (iii) ideal force balance. We may
avoid these problems if we (i) enforce the constraint that the
fields be integrable even for nonaxisymmetric systems, such
as in the perturbed equilibrium model;® (i) allow for dis-
continuous pressure, e.g., the stepped-pressure model;*® or
(iii) approximate an ideal MHD equilibrium by introducing
small, nonideal terms.

In the perturbed equilibrium model, one may eliminate
the chaotic magnetic field in favor of an integrable field, by
exploiting the possibility in ideal MHD that delta-function
singular currents may exist at the rational surfaces.”” The
singular currents may be computed“’67’68 so as to exactly
cancel the perturbing “error fields” that drive islands and the
associated chaos. Expanding the variation in the plasma en-
ergy to second order,

1
5W=f (Vp—jXB)-(S§dV+Ef F . 6&dV, (7)
v v
where F=Vp—35j X B—j X 6B, we may construct the first-

order correction required to bring an initial field (with nested
surfaces) that approximates an ideal equilibrium closer to the
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true equilibrium field (with nested surfaces). The Newton
correction is given by F-6&=—(Vp—j X B). The matrix op-
erator, F, is singular at the rationals, and the solution, 8§, is
generally discontinuous. However, the discontinuities now
appear at the rationals, which is at least a countable set. The
stability of the equilibrium is given by ideal stability theory.

The stepped-pressure model allows for pressure gradi-
ents across chaotic fields by realizing that the KAM surfaces
can support a pressure discontinuity, provided that the diver-
gence of the stress tensor vanishes.” The plasma volume is
partitioned into a set of nested annular regions, which are
separated by a finite number of KAM surfaces. In each an-
nulus, the plasma energy is given by Eq. (1), and an equilib-
rium is obtained when the plasma energy is minimized. The
plasma energy is minimized subject to the constraint of con-
served helicity, K=[,A-BdV, which is the “most con-
served” invariant for plasmas in which reconnection is
allowed.”” The multivolume constrained energy functional,
F, for the stepped-pressure model® is given

F:E(W,+%K,-), (8)

where the o; are Lagrange multipliers and the index i labels
the volumes separated by the interfaces. The stepped-
pressure model is essentially a multivolume Taylor-relaxed
equilibrium.”" (For full details of this approach, see Ref. 66).

The Euler-Lagrange equation derived by minimizing the
energy functional, Eq. (8), by allowing variations in the mag-
netic field is VX B,;=0;B; so that between the KAM inter-
faces, the magnetic field is a force-free Beltrami field. The
Euler-Lagrange equation derived by allowing variations in
the geometry of the interfaces is [p+B%/2]=0, where [...]
denotes the jump across the KAM interfaces, so that the total
plasma pressure is continuous. To give a nontrivial pressure
profile, only a finite set of interfaces is required. Some steps
have been taken toward implementing these ideas in an equi-
librium code,” and the stability of such equilibria has been
studied in cylindrical geometry by Hole et al.”> ™ These
equilibria are discontinuous on a finite set, but the number of
interfaces, the pressure profile, and the transform profile are
selected a priori.

The third approach, on which we now concentrate, is to
allow small deviations from ideal MHD. The problems dis-
cussed in Sec. IV arise because there is no scale length in
MHD. The equation B-Vp=0 requires the pressure to be
constant along the “infinite length” of the field-line, despite
the fact that the field-line may trace out structures, which are
vanishingly small. Equivalently, B-Vp=0 implies that the
relaxation of the pressure along the magnetic field is infi-
nitely fast.

Clearly, ideal MHD is an oversimplification of plasma
dynamics. Collisions and finite-Larmor-radius effects, for ex-
ample, will affect a local smoothing of the pressure, and this
is exactly what is required to eliminate the singularities and
discontinuities. Any perpendicular transport will naturally in-
troduce a perpendicular scale length, below which the mag-
netic islands and the fine scale structure of the chaotic mag-
netic field will be irrelevant. To derive a complete and
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coherent mathematical model, we must present an equation
that approximates this effect.

Motivated by the study of anisotropic heat transport in
chaotic ﬁelds,59 we consider the case where the parallel
transport is characterized by a large but finite parallel diffu-
sion coefficient, «j, and is balanced by a small but nonzero
perpendicular relaxation, characterized by «, so that
> k. We must modify the force balance equation to allow
for pressure gradients along the field, and so we include in-
ertial and viscous forces arising from a plasma velocity. To
complete the system and provide a complete mathematical
model, we must include an equation that constrains the ve-
locity, and so we combine Faraday’s law and Ohm’s law. The
equilibrium is concisely defined by the steady state solution
to the following system of equations:

9P _

P =V-(qVip+x, V. p)+S, )
ov
pg:jXB—Vp—pv-VvtuV-VV, (10)
/B
E:VX(VXB—Uj). (11)

The derivative along the field-line is V;p=bb-Vp, where b
=B/B, and the perpendicular derivative is V p=Vp-Vp.
An inhomogeneous source term for the pressure, S, drives
nontrivial solutions. We may set the homogeneous boundary
condition that p=0 on some computational boundary and
adjust the source so that the computed pressure matches ex-
perimental observations. The viscosity, u, the density, p, and
the resistivity, 7, are (at least from a mathematical perspec-
tive) arbitrary constants.

VIil. ALGORITHMS

There is of course nothing radical about approximating
an ideal MHD equilibrium by a resistive steady state. We
have come to this conclusion by considering the impact of
chaotic fields on MHD equilibria and requiring that the pres-
sure be continuous. The existence of solutions of a similar
model of dissipative plasma equilibria has been investigated
by Spada and Wobig.76 A similar system can be derived by
taking appropriate limits from the NIMROD'""® and M3D (Ref.
79) equations. A similar model was suggested by Park er al*?
and forms the basis of the HINT code; however, Park et al.
replaced Eq. (9) with an artificial sound wave approach to
drive the solution toward B-Vp=0.

In the case of the HINT code, the equation B-Vp=0 is
enforced iteratively according to

+Lp
f =l ran
. B

Prew = +L 1 ’
f —dl
. B

(12)

where L is the integration length along the magnetic field-
line from an Eulerian grid point and F is the weight function
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{1 for L=L. (13)

0 for L>L,,

where L. is the connection length of the magnetic field-line
from the starting Eulerian grid point to the boundary. In this
method, as is shown in Fig. 6 in Ref. 80, the pressure profile
develops spikes where the magnetic field is chaotic.

An earlier attemptso’81 to resolve this type of numerical
result employed a model of parallel transport model, where
the form of the weight function was taken as

for l,,,=L=L,

1 -
= /p (14)
0 for others,

where [,,7, is the mean free path along a magnetic field-line.
As is shown in Fig. 3 in Ref. 81, the pressure profile in the
chaotic magnetic field can dramatically change, depending
on the length of the field-line tracing. This numerical result
indicates that the ideal relation, B-Vp=0, is inconsistent
with chaotic fields because Eq. (12) just acts as a nonlinear
redistribution of the initial pressure profile parallel to the
field without any regard of the variation in the pressure in the
perpendicular direction.

An anisotropic diffusion equation for the pressure is
preferable. The effect of perpendicular pressure diffusion is a
smoothing operation, and magnetic islands (and other struc-
tures of the chaotic field) that are smaller than a critical is-
land width, Aw~ O(k, / KH)1/4, do not affect the structure of
the pressure. A major motivation for choosing Egs. (9)—(11)
as our equilibrium model is that much of the computational
architecture has already been implemented in the HINT code.
[Work on extending the HINT code to use Eq. (9) has begun,
and we hope to present numerical results in a future article. ]

The simplest approach to solve for the steady state is to
just follow the time evolution perhaps using kinetic-energy
quenching.32 However, it may be possible to accelerate con-
vergence by solving Egs. (9) and (10) directly by setting
d,p=0 and d,v=0. Equation (9) is a linear equation for the
pressure, p, given the magnetic field, B. The large anisotropy
K>k, demands that accurate numerical techniques must be
applied to ensure that the strong parallel diffusion does not
overwhelm the weak perpendicular diffusion, but numerical
methods for solving this anisotropic diffusion equation have
studied by many authors (see, for example, Ref. 82 and ref-
erences therein).

Having solved the pressure for an arbitrary B, a residual
force j X B—Vp will drive a plasma flow, as described by Eq.
(10), which may be interpreted as an equation for the plasma
velocity. Writing v, =V, + 6V, a linear equation for the first
order correction, ov, is obtained which, when embedded in
an iterative scheme, will accommodate the nonlinear terms.
[The steady state solution of Eq. (11) is vXB-7j=V®, and
so to invert this equation either for v or B, it seems that the
quantity V@ must be provided.] To demonstrate convergence
with respect to iterations, n, one must confirm that
[B,..1—B,||/|IB,|| < €, where € is some desired numerical tol-
erance and |f| is some measure of the “size” of f, e.g.,
I]=1>1f14V.

We have avoided the numerical problem of inverting the
operator B-V. Have we satisfied the solubility conditions for
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the magnetic differential equations? The magnetic differen-
tial equation for the pressure has been replaced by Eq. (9).
Embedded in this equation is the B-V operator, but now the
right-hand side is not independent of the solution; that is, we
now have B-Vp=«;'B2[(S—«, V-Vp)dl/|B|. Rather than
treating the right-hand side as an independent, prescribed
source, which may or may not solve the solubility condi-
tions, the «j'B2[«,V-Vpdl/|B| term may be thought of as a
“source-correction” term that allows the solubility conditions
to be satisfied.

The current must still satisfy B-Vo=-V-j . Rather than
first insisting that the perpendicular current satisfy force bal-
ance and then struggle to solve the magnetic differential for
the parallel current, we may instead guarantee that the cur-
rent be divergence free by simply writing j=V X B. The par-
allel current is given by o=j-B/B? and the perpendicular
current is given by j, =j— oB. Any error in the force balance
Eq. (10) is accommodated by calculating the change in the
velocity, which in turn is used to update the magnetic field.

An alternative approach for solving a similar equilibrium
model that allows for pressure gradients in chaotic fields was
suggested by Reiman ef al.*' Rather than employing Eq. (9)
as the defining equation for the pressure, the pressure is
taken as a given fixed input quantity on the understanding
that this information will be provided by experimental obser-
vations. The velocity terms in the perpendicular force bal-
ance are assumed to be small compared to the pressure gra-
dient force so that from Eq. (10), the perpendicular current
may be approximated by j, =B X Vp/B?. The parallel cur-
rent is then determined by requiring that V-j=0 to give a
magnetic differential equation for the parallel current,
B-Vo=-V-j,. Modeling the effect of chaotic fields by a
weak field-line diffusion, this magnetic differential equation
is statistically averaged so that the solution is given by Eq.
(6). The magnetic field is then given by V X B=j.

We raise some concerns about this approach. First, if
j =B XVp/B?, but the pressure is not flattened across the
resonances and chaotic regions, there is no guarantee that the
solubility conditions for the equation B-Vo=-V-j, will be
satisfied: an arbitrary j, =B X Vp/B? is not consistent with
V-j=0. For the magnetic differential equation for the parallel
current to be solved, the extra source-correction terms in the
perpendicular current arising from the plasma velocity,
B X (pv-Vv+uV-Vv)/B%, must be included and be deter-
mined so that the solubility conditions are satisfied. Addi-
tionally, it is the solution, o, of this magnetic differential
equation that guarantees that V-(oB+j,)=0. The statisti-
cally averaged coarse-grained solution, to the extent that it
deviates from the exact solution, would presumably violate
this condition. If the divergence of the current is nonzero, it
is not clear how one can invert the curl operator to solve for
the magnetic field given the current, VX B=j.

Our second concern with this algorithm is that there is
no mechanism by which the structure of the magnetic field
influences the structure of the pressure. In strongly magne-
tized plasmas, the transport parallel to the field overwhelm-
ingly dominates the perpendicular transport: a strongly cha-
otic field presumably must affect the pressure. If the
anisotropic diffusion equation for the pressure is valid, then
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the pressure gradient must be reduced across the “rational
regions” (i.e., islands and chaotic volumes) with width
greater than the critical island width (and to the extent that
the pressure gradient is reduced; then the additional terms in
the perpendicular force balance may become important). The
KAM surfaces and cantori have an important effect on both
field-line and anisotropic transport.5 ® The pressure will de-
form and adapt to the surviving KAM surfaces and cantori,
and the pressure gradient will be comparatively enhanced in
these “irrational” 1regi0ns.60 We may expect that the en-
hanced pressure gradients will result in enhanced perpen-
dicular currents, which in turn alter the structure of the field.
(Experimental observations of the pressure profile will inher-
ently contain experimental uncertainties, and the effect of
these uncertainties is magnified as it is the pressure gradient
that is required to compute force balance.)

IX. FINAL COMMENTS

There is, of course, additional physics that could be in-
cluded in the equilibrium model described by Egs. (9)-(11).
The pressure diffusion coefficients, «; and « |, the viscosity,
., the density, p, and the resistivity, », have been described
above as arbitrary constants; these terms should preferably
be decided by physical considerations (see, for example, Ref.
83) or could be chosen to accelerate convergence.3 ? (The
effect of including these additional terms is to smooth the
singularities in the pressure gradient and current and to regu-
larize the linear operators that need to be inverted.)

Nevertheless, the equilibrium equations represent a com-
plete mathematical model that is amenable to numerical
computation. In the previous section we described a possible
iterative algorithm for computing solutions. However, the
equilibrium model itself is independent of the numerical al-
gorithm one may use to obtain a solution and is similarly
independent of any particular numerical discretization: one is
free to use finite-differences, finite-elements, or Fourier
methods as one wishes, the only discriminating factor being
computational speed and accuracy. For any numerical ap-
proach, a solution should be obtained that is independent of
numerical resolution, which in turn should be achieved when
the numerical resolution is sufficient to resolve all structures
of the solution.

We have argued that Vp=j X B, with a continuous pres-
sure, only has solutions with an uncountable infinity of sin-
gularities in both the pressure gradient and the current when
the field is chaotic. Such solutions are not suited to numerical
approximation. By including nonideal terms we have elimi-
nated the pathological singularities, and we have argued that
the addition of these terms is required for computational trac-
tability. By including an anisotropic diffusion equation for
the pressure, we no longer need to specify the pressure a
priori as a boundary condition, and the pressure adapts self-
consistently to the chaotic structure of the magnetic field. We
have a complete mathematical model that can consistently
treat pressure gradients in chaotic fields, and in future work
we hope to investigate the so-called soft-beta limit, where
transport is linked to the breaking of magnetic surfaces.
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